

Fruits and Vegetables – Why More Matters

Francene Steinberg, PhD, RD Professor and Chair Department of Nutrition University of California, Davis

September 22, 2012

Obesity & Nutrition in a Changing World Symposium

Learning Objectives

Learners will:

- Gain an understanding of usual fruit & vegetable intake
- Be able to define the term dietary "phytonutrient" or "flavonoid"
- Be able to describe the association between fruit & vegetable intake, and positive health outcomes (reduction of chronic disease risk)
- Be able to describe possible mechanisms for how phytonutrient –rich foods promote health
- Be aware of challenges to implement successful interventions to increase fruit & vegetable intake in a

Fruit & Vegetable Intake – US Trends 1988-2002

- 10.8% of population eating ≥ 2 Fruit & ≥ 3 Vegetable servings
- 23.6% of population eating \geq 5 of any Frt/Veg combination

Casagrande et al. Am J Prev Med 2007 32:257

Fruits & Vegetables and Chronic Disease Risk

- leading to \downarrow risk of the following diseases:
 - Hypertension, Coronary Heart Disease, Stroke
- Probable evidence:
 - Cancer, Type 2 diabetes (indirectly through weight control)
- Possible evidence:
 - Obesity, Macular degeneration, Dementia, Asthma & COPD
- Insufficient evidence:
 - Inflammatory bowel diseases, diabetic retinopathy 0

Slavin & Lloyd 2012 Adv Nutr 3:506 Boeing et al 2012 Eur J Nutr epub ahead of press

Fruits and Vegetables Decrease Cardiovascular Disease **Risk & Clinical Outcomes**

Multivariate adjusted* Relative Risk for Frt/Veg consumption ≥ 3 times/day vs. <1 time/day

- Ischemic heart disease mortality RR=0.76 (95% CI: 0.56, 1.03)
- CVD mortality RR=0.73 (95% CI: 0.58, 0.92)
- All cause mortality RR=0.85 (95% CI: 0.72, 1.00)

*adjusted for age, sex, race, energy, physical activity, alcohol consumption, smoking, plus others

Bazzano et al AJCN 2002; 76, 93-99

Cross-sectional studies using biomarker outcomes

- F/V intake is correlated with improved inflammatory status in a community setting
 - N=1000, 18-85 y, food intake assessed & blood samples taken
 - Inverse relationship of inflammatory markers with increasing F/V intake 0
 - Root et al. Nutrients 2012 0
- F/V consumption is related to makers of inflammation and oxidative stress in adolescents
 - N=285, 13-17 y, food intake assessed & blood samples taken 0
 - Inverse relationship of inflammatory markers with increasing F/V intake 0
 - Holt et al. JADA 2009 0

Fruits & Veggies contain...

- Vitamins (C, Folate, etc.)
- Minerals (Potassium, Magnesium, etc.)
- Fiber (mostly soluble)
- Bioactive compounds
 - Not traditional nutrients
 - Have biologic activities
 - Examples: Carotenoids (such as lutein, zeaxanthin, lycopene, etc.); Phytochemicals (such as various phenolic compounds – ellagic acid, quercetin, anthocyanidins, etc.)

Dietary Phytochemicals

Phytochemicals are a broad and diverse group of phenolic compounds that are produced in and accumulate in plants.

Phytochemical rich foods include: fruits and vegetables, some cocoa products, as well as whole grains and beverages such as tea & wine.

Phytochemicals can alter metabolic & cellular processes.

Most dietary studies indicate that diets rich in phytochemicals are associated with improved health and provide protection against chronic diseases, or alter in a positive direction markers for chronic disease.

Others (stilbenes, ligans)

Proanthocyanidins Oligomers of Flavanols Catechin/Epicatechin (cocoa, tea, apples, peanuts)

Questions about health promoting effects of food flavonoids

- Important issues:
 - Are the phytochemicals absorbed & do they get to target tissues? How much is absorbed?
 - What is the best model to study the effects in?
 - What are the biologic effects on key markers of function or health? (or disease risk)
 - Is the effect the same in healthy or at risk individuals?
 - What is/are the specific bioactive component(s)?
 - How can you monitor intake after consuming the food? 0
 - What are the implications for human health? Should there be specific 0 distant recommendations for intella

Dietary Flavonoids

- Estimated intake: 0.01-1.0 g/day
- Major Dietary sources:
 - Fruits and vegetables such as apple, grapes, onion: rich in flavonols, (quercetin, anthocyanidin, kaempferol)
 - Citrus fruits: rich in flavanols (hesperidin and naringenin)
 - Soy: rich in isoflav Daidzein)

Absorption, Distribution, Metabolism, Excretion (ADME) – Factors which impact biologic effects of phytochemicals

- Intake of phytochemical or precursor does not automatically equate with exposure at tissue level
- Inter-individual differences
 - Transport across intestinal wall
 - Biotransformation enzymes (phase I & II) genetic differences & effects of 0 other endogenous or xenobiotic compounds
 - Intestinal Microbiota
 - Gut transit 0
 - Age, gender, physiologic state
- Diet, food matrix, chemical nature of polyphenol

Metabolism of Flavonoids

- Absorbed mainly in aglycone form, possibly some glycosides
- Peak blood levels occur within 1 to 2.5 hours, or up to 8 hours for some compounds
- Plasma concentration in 1-5 μ mol/L range
- Circulate in blood as conjugated metabolites (glucuronides and methylated or sulfated)
- Can be partially metabolized by gut microbes
- Elimination half-life of 23 to 28 hours
- Urinary excretion
- Bioavailability of 20% +/-

Dietary polyphenols have been postulated to modulate the development and progression of several chronic diseases:

- Age related vision loss
- Osteoporosis
- Obesity

- Hypertension
- Cardiovascular disease
- **Diabetes**
- Cancer

Flavonoid Intake and Risk of CHD Mortality

Mean Flavonoid Intake (mg/day)

Hertog et al. Arch Intern Med 155: 381-386, 1995

70

80

Flavonoids, Flavonoid-rich Foods & Chronic Disease Risk

- AJCN 2008 Hooper et al. Meta-Analysis of 133 RCT of various flavonoid food sources on CVD risk
 - Green tea (LDL), cocoa (FMD), soy protein (LDL) 0
 - Clinically relevant changes observed 0
- AJCN 2007 Mink et al. Flavonoids and CVD mortality in Iowa Women's Health Study
 - Found RR for highest vs lowest quintile or any intake vs none for classes of flavonoids between 0 0.78 and 0.91
 - Individual foods associated w/ risk reduction included bran, apples, pears, red wine, grapefruit, strawberries, chocolate
- Int | Cancer 2008 Cutler et al. Flavonoids and Cancer Risk in Iowa Women's Health Study
 - Isoflavone intake inversely associated w/ overall cancer incidence
 - Lung cancer incidence inversely associated w/ flavanones & proanthocyanins. Strongest effect in current & past smokers
- Nutr Rev 2012 Peterson et al. Associations between flavonoids and cardiovascular

Comments on Epidemiologic vs Clinical Trials for Investigating Health Effects of Flavonoids

- Observational Epidemiologic studies can confirm or negate theories about importance of flavonoids in the diets of free-living individuals
 - Useful to evaluate human health effects of long-term exposure to physiologic concentrations of flavonoids
 - Cannot prove causality
 - Reliable data on flavonoid contents of foods not available for all classes 0
 - Correlations between flavonoids & other food components is high, therefore difficult 0 to conclude association truly exist w/ the flavonoid alone
- RCT human clinical studies
 - Aimed at demonstrating physiologic phenomenon in response to foods or to isolated food flavonoid components
 - Important to consider synergisms of food components & other foods in total diet 0
 - Help to identify potential mechanistic functions 0
 - Evamina higher returnelly dinical and ainte

Phytochemicals (Flavonoids) - Potential Targets and **Mechanisms of Action**

- Cellular & Molecular Targets
 - Enzyme inhibition or activation 0
 - Modulation of transcription factors, nuclear 0 receptors & gene expression
 - Modulation of inflammatory response 0
 - Antioxidant action 0
 - Cell cycle regulation 0
 - Competition with endogenous substrates for 0 receptors
 - Modulation 0
 - Other.... 0

Fig. 6. Schematic summary of the potential actions of (-)-epicatechin and related procyanidins on various signaling pathways.

"Let food be thy medicine and medicine be thy food"

Hippocrates The Father of Medicine 460 BC – 377 BC

- The public is embracing the concept of -- "food as medicine" in response to the evolving health care crisis that is occurring in most developed countries.
- The goal of "optimal health" is desired by many, but the promise of the "optimal diet" and "miracle" or "super foods" is often more attractive than the recommendation of a balanced diet rich in fruits, vegetables and plant foods.
- How to achieve higher fruit & vegetable intakes; what is effective for

Examples of diet patterns rich in food phytochemicals...number of F/V servings is \geq typical USDA dietary guidelines or the American Heart Association recommendations:

• DASH diet

Mediterranean diet

DASH Diet **Dietary Approaches to Stop Hypertension**

Control American Diet

(37% total fat, 3.6 serv F/V, 2.5 serv meat, 0.4 serv dairy)

Fruit/Vegetable Diet

(37% total fat, 8.5 serv F/V, 2.5 serv meat, 0.3 serv dairy, **0.6 serv nuts)**

DASH Diet

(27% total fat, 9.6 serv F/V, 1.6 serv meat, 2 serv low fat dairy, 0.7 serv nuts)

Outcomes:

• Change in Blood Pressure: \downarrow 5.5 mm HG systolic, 3.0 mm Hg diastolic on the Dash diet, intermediate results on F/V diet

Lowering Your Blood Pressure With DASH

Lower Your Blood Pressure

Å.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and Blood Institute

BOX 3

Following the DASH Eating Plan

Food Group	Daily Servings	Serving Sizes
Grains*	6–8	1 slice bread 1 oz dry cereal† 1/2 cup cooked rice, pa
Vegetables	4–5	1 cup raw leafy vegetal 1/2 cup cut-up raw or c 1/2 cup vegetable juice
Fruits	4–5	1 medium fruit 1/4 cup dried fruit 1/2 cup fresh, frozen, or 1/2 cup fruit juice
Fat-free or low-fat milk and milk products	2–3	1 cup milk or yogurt 11/2 oz cheese
Lean meats, poultry, and fish	6 or less	1 oz cooked meats, pou 1 egg‡
Nuts, seeds, and legumes	4–5 per week	¹ / ₃ cup or 1 ¹ / ₂ oz nuts 2 Tbsp peanut butter 2 Tbsp or ¹ / ₂ oz seeds ¹ / ₂ cup cooked legume and peas)
Fats and oils⁵	2-3	1 tsp soft margarine 1 tsp vegetable oil 1 Tbsp mayonnaise 2 Tbsp salad dressing
Sweets and added sugars	5 or less per week	1 Tbsp sugar 1 Tbsp jelly or jam ½ cup sorbet, gelatin 1 cup lemonade

* Whole grains are recommended for most grain servings as a good source of fiber and nutrients.

[†] Serving sizes vary between 1/2 cup and 11/4 cups, depending on cereal type. Check the product's Nutrition Facts label.

asta, or cereal

ble :ooked vegetable

canned fruit

ultry, or fish

s (dry beans

Mediterranean Diet Pyramid

Examples from PREDIMED Trial

Prevencion con Dieta Mediterranea

- Large (n=7,447) multicenter European trial of individuals with risk factors but free of CVD. 3 diet arms Med+VOO, Med+nuts, Low fat. Followed multiple years
- Decreased cellular & circulating inflammatory biomarkers related to cardiovascular risk (Med diet vs Low fat diet) 2012 Pharamcol Res
- Beneficial changes in apolipoproteins B, A-I and their ratio (Med diet vs Low fat diet) 2011 Atherosclerosis
- Reduced diabetes incidence (up to 52% \downarrow). After 4 yr follow-up, incidence of T2DM was 10.1% vs 17.9% (Med diet vs Low fat). 2011 Diabetes Care

Predictors and Barriers of Fruit & Vegetable Intake

- Predictors
 - Favorable taste preferences
 - F > M
 - ↑ Age
 - \uparrow SES
 - $\circ \uparrow$ Educational status attained
- Barriers
 - Cost
 - Limited access
 - Time to prepare foods
 - Unfamiliarity with certain foods

Conclusions

- Scientific evidence supports chronic disease risk reduction related to F/V consumption, in some but not all conditions
- Health benefits of F/V appear to be associated with food phytochemicals, such as polyphenolic flavonoids, in addition to traditional nutrients
- Flavonoids are absorbed, metabolized & reach target tissues
- Mechanisms of biologic action for flavonoids are multifactorial & involve cellular events
- Benefits are seen with intake levels for F/V higher than USDA recommendations, and as part of a healthful diet pattern
- Average intake of F/V is low and has not changed much over last 20 years. Significant challenges exist regarding the goal of increasing